

High Power relay 100 A

FINDER reserves the right to alter characteristics at any time without notice. FINDER assumes no liability for damage to persons or property, caused as a result of the incorrect use or application of its products.

68 SERIES High Power relay 100 A

Printed circuit mount - 3.6 mm contact gap Relay for applications with high power

Туре 68.22-4300

- 2 NO
- Contact gap ≥ 3.6 mm (according to VDE 0126-1-1, EN 62109-1, EN 62109-2)
- DC coils, with only 700 mW holding powerReinforced insulation between coil and
- contacts

 Suitable for use at ambient temperatures up
- to 85 ℃ • Meets the EN 60335-1 requirements of
- resistance to heat and fire (GWIT 775 °C and GWFI 850 °C)
- Cadmium free contact materials

For outline drawing see page 6		Copper side view		
Contact specification				
Contact configuration		2 NO		
Contact gap mm		≥ 3.6		
Rated current/				
Maximum peak current (for 1 ms)	Α	100/300		
Rated voltage/				
Maximum switching voltage	V AC	400/690		
Rated load AC1/AC7a (per pole)	VA	40000		
Rated load AC15 (per pole @ 230 V AC)	VA	4600		
Single-phase motor rating (230 V AC)	kW	2.2		
Three-phase motor rating (480 V AC)	kW	_		
Breaking capacity DC1: 24/110/220 V	Α	100/5/1.2		
Minimum switching load mN	V (V/mA)	1000 (10/10)		
Standard contact material		AgSnO ₂		
Coil specification				
Nominal voltage (U _N)	V DC	12 - 24		
Rated power		2.9		
Operating range (-40+70°C) DC		(0.90 1.1)U _N		
Energy-saving mode (-40+85)°C				
Operating range for 1 s		(0.952.5)U _N		
Holding voltage range	DC	0.5 U _N		
Minimum holding power	W	0.7		
Must drop-out voltage	DC	0.05 U _N		
Technical data				
Mechanical life cycles		1 · 10 ⁶		
Electrical life at rated load AC7a cycles		30 · 10 ³		
Operate/release time ms		25/3		
Ambient temperature range				
(energy-saving mode)	°C	-40+70 (-40+85)		
Environmental protection		RT II		
Approvals (according to type)				

• 2 NO

• PCB mount

Contact gap 3.6 mm

X-2021, www.findercn.com

X-2021, www.findercn.com

Ordering information

68

SERIES

Example: 68 series, power relay for printed circuit, 2 NO contacts, 12 V DC coil.

See coil specifications

Technical data

Insulation according to EN 61810-1		
Nominal voltage of supply system	V AC	400/690 3-phase
Rated insulation voltage	V AC	630
Pollution degree		3
Insulation between coil and contac	t set	
Type of Insulation		Reinforced
Overvoltage category		Ш
Rated impulse voltage	kV (1.2/50 μs)	6
Dielectric strength	V AC	5000
Insulation between adjacent conta	cts	
Type of Insulation		Basic
Overvoltage category		III
Rated impulse voltage	kV (1.2/50)μs	б
Dielectric strength	V AC	4000
Insulation between open contacts		
Type of disconnection		Full-disconnection
Overvoltage category		111
Rated impulse voltage	kV (1.2/50)μs	4
Dielectric strength	V AC	2500
Insulation between coil terminals		
Rated impulse voltage (surge) differe	ntial mode	
(according to EN 61000-4-5)	kV (1.2/50 μs)	4
Other data		
Bounce time: NO	ms	2
Vibration resistance (10150)Hz: NO	g	9
Shock resistance	g	30
Power lost to the environment	without contact current W	2.9
	with rated current W	13
Test procedure		B (single mounting)
Recommended distance between rel	ays mounted on	
PCB in case of group mounting	mm	2 20
Dated conditional short size it surrow	+ 1.4	5
Rated conditional snort circuit curren	ι <u>κ</u> Α	2 (2) (delayed type)
Back-up fuse for motor load	A	os (delayed type)

F 68 - Electrical life v contact current

NOTE: for ambient temperatures between 70 and 85 $^\circ$ C, the electrical life is reduced by 30%

When switching a resistive (DC1) or inductive (DC13) load having voltage and current values under the corresponding curve, an electrical life of > 30000 cycles can be expected.

NOTE: The heating and electrical endurance tests have been performed on relays soldered on PC boards having the following characteristics: double side, copper thickness >105 μ m, contact tracks width 40 to 45 mm, total cross section about 10 mm² 68

Coil specifications

DC coil data

Nominal voltage	Coil code	Operating range (@ 70 °C max)		Holding voltage	Resistance	Rated coil consumption I at U _N
U _N		U_{min}	U _{max}	U _h	R	I _N
V		V	V	V	Ω	mA
12	9 .012	10.8	13.2	6.0	50	240
24	9 .024	21.6	26.4	12.0	200	120

R 68-1 - Operating range v ambient temperature,

with standard (continuous) coil energization (-40...+70)°C

1 - Max. permitted coil voltage.

2 - Min. pick-up voltage with coil at ambient temperature.

R 68-2 - Operating range v ambient temperature,

in energy saving mode (-40...+85)°C

1 - Max. permitted coil voltage.

2 - Min. pick-up voltage with coil at ambient temperature.

Outline drawings

Type 68.22

Energy saving mode

In some applications, such as photovoltaic inverters, it may be necessary to minimize the overall relay power dissipation and to permit use at higher ambient temperature levels (up to 85 °C). This can be achieved by initially applying a coil voltage within the Energy saving mode Operating range (see diagram to the left) and then rapidly (< 1 s) reducing the coil voltage to a level within the Holding voltage range. The lower the Holding voltage, the lower is the continuous power dissipation of the coil (0.7 W minimum).

Coil voltages as high as 2.5 U_{N} may be used, when necessary, to reduce the contact operate time.